Primal-dual Solution Perturbations in Convex Optimization

نویسندگان

  • A. L. Dontchev
  • R. T. Rockafellar
چکیده

Solutions to optimization problems of convex type are typically characterized by saddle point conditions in which the primal vector is paired with a dual ‘multiplier’ vector. This paper investigates the behavior of such a primal-dual pair with respect to perturbations in parameters on which the problem depends. A necessary and sufficient condition in terms of certain matrices is developed for the mapping from parameter vectors to saddle points to be single-valued and Lipschitz continuous locally. It is shown that the saddle point mapping is then semi-differentiable, and that its semi-derivative at any point and in any direction can be calculated by determining the unique solutions to an auxiliary problem of extended linear-quadratic programming and its dual. A matrix characterization of calmness of the solution mapping is provided as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

Primal-dual exterior point method for convex optimization

We introduce and study the primal-dual exterior point (PDEP) method for convex optimization problems. The PDEP is based on the Nonlinear Rescaling (NR) multipliers method with dynamic scaling parameters update. The NR method at each step alternates finding the unconstrained minimizer of the Lagrangian for the equivalent problem with both Lagrange multipliers and scaling parameters vectors updat...

متن کامل

Global Optimality Conditions for Discrete and Nonconvex Optimization - With Applications to Lagrangian Heuristics and Column Generation

The well-known and established global optimality conditions based on the Lagrangian formulation of an optimization problem are consistent if and only if the duality gap is zero. We develop a set of global optimality conditions which are structurally similar but which are consistent for any size of the duality gap. This system characterizes a primal–dual optimal solution by means of primal and d...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

Generalization of Primal-Dual Interior-Point Methods to Convex Optimization Problems in Conic Form

We generalize primal-dual interior-point methods for linear programming problems to the convex optimization problems in conic form. Previously, the most comprehensive theory of symmetric primal-dual interior-point algorithms was given by Nesterov and Todd 8, 9] for the feasible regions expressed as the intersection of a symmetric cone with an aane subspace. In our setting, we allow an arbitrary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001